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SUMMARY

This review paper is the consequence of plasma introduction as a medium

wuth specific electromagnetic properties in the problems of diffraction.

is done with the view of the newly opened up areas of this field, but clearly
concentrating on the diversified requirements for practical applications, and,

for space scientists, for radiocommunication in the presence of ionization
irregularities, and, more particularly, with regard to the ionosphere.

It contain four major sections, each divided into sub-sections, and
covering all aspe s of plasma boundaries, cavities and states of homoge-
neities or inhomogeneities. It goes as follows:

INTRODUCTION

1. LIMITING CASES OF LOW AND HIGH PLASMA DENSITY
. Born Approximation
Dense Plasma with Sharp or Weakly-Blurred Boundaries. Impe-
dance Description

2. NUMERICAL COMPUTATIONS AND SHORTWAVE APPROXIMATION FOR A PLASMA OF
ANY DENSITY

Reflection from a Uniform Nonabsorbing Sphere
. Weak Plasma Boundary Washing
. Plasma with Strongly Washed Boundary
3. RESONANCE SCATTERING ON SMALL PLASMA OBJECTS

Dipole Resonance in Cold Plasma

4. DIFFRACTION ON BODIES PLACED IN A NONUNIFORM PLASMA

This section includes some comments with regards to the ionosphere.
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INTRODUCTION

Genera] Remarks. The "introduction" of plasma as a medium with specific
electromagnetic properties* in the problem of diffraction began relatively
recently, no more than a couple of decades ago. Nevertheless, inasmuch as
it opened up a new and broad area for the efforts of theoreticians, and also
in connection with the diversified requirements of practical applications,
such as the microwave diagnosis of lsboratory plasma, the radiation accele-
ration of plasma clusters, the location and radiocommunication in the pre-
sence of ionization irregularities in the atmosphere and so forth, the number
of publications in this field has exceeded a long time ago the bounds of the
easily rewieable and it continuous to grow rapidly.

In the present brief review no detailed and exhaustive aim is laid down
for the description of the contemporary state of the problem as a whole.
The circle of the questions considered encompasses a certain, to a certain
degree substantiated and independent part of them related to the regular and
isotropic stationary plasma (i.e., not fluctuating and not magnetoactive)
with a purely electron polarizability, assumed, as a rule, to be independent
of the magnitude and structure of the field and described by the complex di-
electric constant¥*#
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where w is the field frequency (the temporal factor exp (iwt) being assumed),
Vv is the effective collision frequency, @, = (4=e’N/m)'? is the plasma fre-
quency (the Langmuir frequency), e is the charge, m is the mass of the elec-
tron and N is their concentration.

Relationship with Classical Problems of Diffraction. In a such a narrow

statement of the problem the diffraction on plasma appears in essence as a
certain generalization of classical diffraction problems to dielectric bodies
(inhomogenous in the general case) with Ree < 1, so that all exhaustive ana-
lytical solutions could be carried nearly automatically to plasma objects.
This concerns quite a few exact solutions for bodies of simplest shape (plane
layer, sphere, cylinder [2]), as well as solutions obtained by approximate
methods (shortwave and longwave approximations, Born approximation etc.).

In case of weask field penetration into plasma, that is, for sufficiently
great negative values of €, it is found to be possible to base ourselves

on simpler problems of diffraction on bodies with impedance boundary condi-
tions.

¥ A sufficiently detailed enumeration of plasma medium's singularities
may be found, for example, in the Ginzburg's book [1].

*¥% An important exception will be constituted, however, by so e ques-
tions of resonance interaction, for which the nonlinear effects and the spa-
tial dispersion, conditioned by thermal motion, may have a principle signi-
ficance (see Section 3).




It is indispensable, however, to bear in mind that the classical solu-

tions, related as a rule to the case € > 1, must, generally speaking, trans-
fer into the region --00 < € < 1 with a well known caution, and in a series
of cases even after appropriate reexamination. Two basic factors may be out-
lined, which are capable to hinder the direct transfer of the results from
one region of values of € to another. Firstly, this is a character variation
of the spectrum of localized and quasilocalized solution of superficial wave
type. In particular, for O < € < 1 the wavelength in the plasma is found to
be greater than in the surrounding medium (vacuum) and, consequently, to earlier
localized (for € > 1) fields now correspond emitting, or the so called waves
with leakage. As one passes to negative values of €, there again takes place
a qualitative variation in the character of localized solutions: "true" super-
ficial waves appear, which are compressed to plasma boundary, return waves,
waves with complex propagation constants. Obviously, all this affects sub-
stantially the formation of a diffraction field of the objects with great ex-
tension and compels us to construct for them anew a system of proper modes.
In the course of the latest years such a work was performed relative to sim-
plest plasma systems (plane-parallel plates [3-5], cylinders [6], and, to a
known degree, a qualitative clarity was introduced into this question, with-
out which there could hardly be any possibility of interpreting the structu-
res of fields in complex systems.

The second factor is constituted by the singularities of field behavior
in the neighborhood of plasma resonance surfaces (€ = 0), which for different
frequencies may be disposed practically in any portions of the plasma object.
As follows from the consideration of simplest plane-laminar models [T], the
structure of plasma-resonance region, i. e. the character of € transition
through zero, determined its shielding action and the magnitude of resonance
losses (which in case of linear transition are inversely proportional to its
curvature [8]). On the other hand, the spatial dispersion [9, 10], manifest
by the intense excitation of longitudinal plasma waves becomes substantial
earlier of all precisely on these "zero" surfaces, where the component of the
electric field E, parallel to y€, has a sharp meximum, and the nonlinear ef-
fects, linked with the deformation of plasma equilibrium distribution under
the action of the field does likewise [11].

In order to be able to better concentrate on the specifically '"plasma"
problem (which obviously is by no means exhausted by the two noted factors),
we shall consider the diffraction problems themselves in a simplest possible
setup, digressing, in particular, from the singularities in the diffraction
of localized [12 - 14] and pulsed fields [15], and from diffraction on com-
bined systems (metal surrounded by plasma) [16]. Left aside are also the
numerous problems of traditional classical diffraction, such as the distri-
bution of illumination near the region of shadow boundary behind the scat-~
tering object, the exit from the Fraunhofer zone, the diffraction on body
surface breaks and so forth. We shall dwell only upon scattering of plane
or quasi-plane monochromatic waves on simplest structures (mostly with sphe-
rical or cylindrical symmetry) and on simplest diffraction characteristics
of objects, i. e. the effective scattering cross-sections (mainly backscatter).



In view of the diversity of parameters characterizing the properties of
the scattering plasma object (shape, dimensions, maximum value and character
of density distribution, etc.), it would be extremely difficult to sustain
a rigorous classification of problems over the extent of the entire review
without indulging in a useless formalism and avoiding unnecessary repetitions.
Thus, although in the expose sequence, adopted by us, there is perceived a
certain original classification principle it is interwoven by the magnitude
of plasma density with a classification according to other criteria, say by
the magnitude of the ratio of characteristic dimensions to the wavelength,
by methods of soclution and, finally, simply by the character of plasma parti-
cipation in diffraction. The latter found its expression in a special sub-
section of section 4, where plasma isviewed not as an object of diffraction,
but as an inhomogenous medium filling a significant part of the course between
the emitter and the scattering object. Here the principal attention is given
not to the properly diffractional aspect of the problem, but to the transfor-
ming properties of the plasma medium where diffraction takes place.

1. LIMIT CASES OF LOW AND HIGH PLASMA DENSITY

Born Approximation. Simplest of all fcr the investigation is the case
of rarefied plasma w, << w, sufficiently well described with the help of
the first, so called Born approximation method of perturbations [17]. 1In
this approximation (which, incidently, is equally valid for the solution of
problems of scattering on weak ionization disturbances in a boundless uniform
plasma [18]) the computation of scattered field amounts to seerch for Fourier
transformations of dielectric constant perturbations, A:z(r). In particular,
the differential cross-section ¢, equal to the ratio of energy flux scattered
per unit of solid angle, to the density of energy flux in incident wave,
is determined by the expression

6 = MEYAsexp[—i(k—k')r]dv I2 (A L e,), (1)
16 =%, v

where X and k' are respectively the wave vectors of the ingident and scatter-
ed waves (equal in absolute values k=Fk,Vs,, ky=w/c), ¥ is the angle between
the direction of scattering (E') and the electric vector of the incident
wave, Ag=e—s¢,, €, 1is the dielectric constant of the surrounding medium.

By comparison with standard media (non-dispersing), the plasma sin-
gularity consists here in a different frequency dependence of scattering in-
tensity and a greater variety of distributions A:z(r) offering practical in-
terest. Let us note that the various concrete distributions, mainly for
objects of quasi-cylindrical shape, are considered in the works [8, 18-20].

As is clearly seen from (1), the magnitude and the angular dependence
of 0 are determined essentially by the relation between the wavelength in
the medium and the characteristic dimension of the scattering region a. For
greater wavelengths (ka << 1) scattering has a purely dipole character, and
its intensity at € = 1 is proportional to the square of the total number



of electrons in the object and contrary, say, to the rayleigh case (o v w*),
for w>>v it generally does not depend on frequency (obviously within the 1li-
mits w>>wy),

In the opposite limit case (ka>>1) nearly all the gcatt%?dpower is con-
centrated in a narrow cone of angles near the direction k' = k. In the re-
verse and lateral directions scattering is quite weak and is mainly determi-
ned by reflection from those regions where concentration N or its derivatives
vary noticeably over the wavelength. Let us illustrate this by an example
of symmetrical distribution N(r) having only 1 singular point r = a, in which
there exists a finite number (m - 1) of continuous derivatives, while the de-
rivative of the m-th order has a jump A (N'™ ). Effecting in (1) a consecu-
tive integration by parts, we shall obtain in the shortwave approximation

]
kasin —> 1
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s=8x?r2a’[A(N'™)]*sin® §

(m=0,1, 2, ..), 8 is the angle between vectors ¥ and X', ro = e?/mc? is
the classical radius of the electron. For a smooth concentration variation
(in the wavelength scale) and all its derivatives, the backscatter cross-
section is found to be exponentially small (~ e—(ta)),

It should be taken into account that in the shortwave region the first
Born approximation may result insufficient on account of error accumulation
in the wave phase, passing through the object. This is why the region of ap-
plicability of formula (2), for example, is bounded by the inequality

fko_«.adr «l1
0

in the case of disruption of which the disposition of lobes of scattered power's
diagram is incorrectly defined by this formula. However if we take interest
only by the average intensity over a single lobe, the condition Ae <<g, may

as previously by considered as a sufficient criterion of precision.

Dense Plasma with Sharp or Weakly-blurred Boundaries. Impedance Descrip-
tion. The first, quite obvious and the most utilized approximation for dense
plasma (|e| > 1) with sharp boundaries, in approximate estimates consists
in its substitution by an ideally conducting medium. As a rule, it allows
us to estimate the scattering cross-section with a sufficient degree of pre-
cision. It must, however, be borne in mind that by ascribing the plasma
surface a zero impedance, we ignore, by the same token, its capability of
directing the surface waves, which may, in a rather broad wavelength range,
provide g substantial error when computing O even for comparatively high
ratios (we shall further dwell upon this subject in the following section).
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Naturally, more precise results are provided by setting on plasma sur-
face general boundary conditions of impedance type. Inasmuch as the dif-
fraction problem itself becomes then more or less standard, we shall limit
ourselves here to enumeration of different variants of such conditions.

For & small "skin-layer" thickness % =c/o}]¢| (by comparison with the
characteristic dimensions of the object a) the values of surface impedance
Z are found from the solutions of the corresponding plane problems, and, for
a plasma of moderate density, they are found to be dependent on the struc-
ture and polarization of the external field (impedance with spatial dispersion).
As to the case |e|>> 1, we may assume for Z the universal expression Z =e—!72,
Hence, in particular, for ©,»e®»v we have Z = (w/wp) (i + v/2w).

The plasma boundary washing, taking place in real conditions, always
results in a certain modification of impedance boundary conditions. Thus,
for a uniform object with Ree = g¢ << -1, surrounded by a thin transition
layer of thickness !/ & 8<«&€a with linear variation of concentration along
the transverse coordinate x (8=x/lj—ivie, [,—I<x <), 1 -~ U1, = g, it
is possible to obtain the following general relation, linking the tangential
(t) and normsl (n) components of the external field at boundary (at x = lo):

E, = (5" 4 ikyly) [nH ] + IV Ey, (3)

,ﬂ
where [ = fs-'dx. In a quasi-~static case (Roa. <<1) this relation passes into
. 1~ )

a combined condition for the scalar potential: % I(';; =const. 14 is material
that the quantity I has a finite imeginary part Im I = m{ (for v << w), in-
dependent of V, so that even at formal threshold transition to v = 0, the
energy losses inside the transitional layer (the so called "resonance" losses
in the neighborhood of the point € = Q), are in the general case not zero,
as this follows from (3) (see Division 3).

The opposite limiting case [»§ is examined in the works [21, 22], in
which the incoming half-space impedance with linearly rising concentration
is computed for the cases of inclined TE- and TM-type incident waves. 1In
particular, for kyly; >> 1, we have with a precision to terms of higher order
of smallness

\

_ { l-A (kolo)—ua (TE-waves)

= 4
iA (k)= + = (kyly)~! sin?$, (1)

(TM-waves)
(8, is the angle of incidence, A = I‘(l/3)/31/3 r(2/3)).

For external fields with TM-polarization (Hn = 0, Ep # 0) the impedance
boundary conditions may be also set on objects with zero permeability [5]:

7 = -io00 (Ht = 0 is an "ideal magnetic conductor") (5)

and, in the presence in the transitional layer of a surface where € has zero
above the first order (¢ = (x/l,)", n > 1) (7],

Y



Z = —i(n+ 1) (kly)~. (6)

2. NUMERICAL COMPUTATIONS AND SHORTWAVE APPROXIMATION
FOR A PLASMA OF ANY DENSITY

The peculiarities of scattering on plasma with intermediate values of
density are illustrated below on the basis of the results of certain numeri-
cal calculations and calculations performed in geometrooptical approximation
(taking into account the refraction divergence and distortion of rays). We
shall consider at the outset the plasma formetion of simplest shape, the uni-
form sphere, one of the few objects for which the precise analytical solution
is known for any €, and then we shall discuss the influence of various com-
plicating factors (wesk or sharp washing of the boundary, disruption of sphe-
rical symmetry of density dsitribution).

Reflection from a Uniform Nonabosrbing Sphere. This was examined in [23]
by way of numerical summation of series by spherical harmonics, in whose form
appears the precise solution. Plotted in Fig.l is the characteristic graph
of the dependence of radar scattering cross-section 9pa= 4% 5{(fh =) (normali-
zed to the geometrooptlcal value 0 = ma? for a metallic sphere of same ra-
dius a) on N/Ner = Wp 2/w? for a rather large ratio of radius to wavelength
(koa = 40). In the region N << Nerthe value of 3,, rises monotonically with
the concentration. As the concentration approaches the critical value Ner
% . begins to oscillate strongly (the drops reach 1 to 2 orders), though, as
an average, it rises as previously with the increase of N. These oscilla-
tions are conditioned by the appearance of phase onrush (propagation phase
increase) on sphere's diameter on account of concentration. At N = N.p (€ =0)
the radar cross-section coincides with 0, and remains invariable up to the
value N = UN.,, beginning with which the
dependence ¢,,(N) again becomes oscil- 10F o1
lating, dev1at1ng from s, by about one
order. As N increases further, the swing {
of osc1llat10ns gradually decreases and
for N > 102 Ner there no longer is any 10
distinction between o,, and Op. Analo-
gous oscillations 9a take place also at 10
sphere radius variation, whereupon they 3
remain 31gn1f1cant through the values 0
koa Vv 102

Anomaiocusly large departures of the
ratio 9p./9 from the unity for N > N,,. 0
may be explained by resonance excitation
of feebly emitting quasi-superficial ﬁ‘
waves directed by plasma boundary and .
the interference of their emission fields 0L - 3
with the "regular" part of the scattered LA A A A Mww
field. At plasma boundary surface waves may Fig.1
exist for € < =1 (N > 2Ner). The fact that on the graph presented oscillations
begin from a doubled value of N is apparently linked with either a significant




increase of interval N variation over the width of the corresponding resonan-
ce peaks, assumed at computations, or with the insufficiency of the number

of series' terms taken into account (as €+ -1, the width of peaks approaches
zero and the required number of terms of series approaches the infinity*).
Nevertheless, although the omission of high-order resonances in the vicini-
ty of € = -1 was indeed the consequence of a certain incorrectness of compu-
tations, it has a specific practical sense, inasmuch as even a very weak ab-
sorption in the plasma already leads to a strong damping of surface waves
with a great deceleration (as €-+-1 their phase velocity approaches zero) and
consequently to a total suppression of corresponding resonances.

Weak Plasma Boundary Washing. This does not practically affect the part
of the scattered field which is not connected with any sorts of resonances,
but because of the presence of the above-mentioned terminal losses inside
the transitional layer, it leads to the appearance of an additional surface
wave damping [27], weakening by the same token the resonance effects linked
with its excitation. The ratio of imeginary (h") to the true (h') part of
the propagation constant of the surface wave traveling along the washed bound-
ary, 1is equal with a precision to & factor of the order of unity to the ratio
of thickness of the transitional (linear) layer !, to the wavelength 1/h'
(h"/n' ~ h'ly), whence it follows that the condition for a strongwave damping
during one passage around the sphere is (h')? al, » 1., Thus, even during a
comparatively weak boundary washing, the resonances of surface waves, and
alongside with them the oscillations of the scattering cross-sections relati-
ve to g, = nﬁz, in the region N > N.., Koa >> 1, are already vanishing.

This is corroborated also by the results of numerical integration of wave
equations, performed for spherically and cylindrically symmetrical forma-
tions with various laws of concentration decrease by radius [28 - 31].

Plasma with Strongly Washed Boundary. Geometrooptical Approximation.

In the case when the decrease of the concentration in the transparency re-
gion (e > 0) takes place sufficietly smoothly in the wavelength scale, the
problem may be fully resolved in geometric optics approximation and smounts
to the calculation of ray refraction in a medium with a nonuniform index of
refraction n =l/E [32 - 39]. At the same time, for scattering cross sec~—
tions of radially symmetrical objects one succeeds in obtaining sufficiently
simple general expressions [32, 35, 36]. In particular, for an inhomogenous
sphere without losses

s _—_-“[j? a —2(”(‘1)-‘—0' 0<n(r>
" o : a) (1)

Hence it follows that the often used substitution of a nonuniform plasma
sphere by a metallic sphere of radius a on which € = 0 for approximate es-
timetes, always yields overrated values of back scatter cross-section

(3p 20, = =a%). Thus, for &(r>a)=1—a?r? so,,=4s,/z* [36]. For objects
with sufficiently thin transitional layer (¢ =(r—a)/l,, a<r<La+l,, [(&a)
the refraction effects yield only small correciions to cross-section:

Gp a=0(1 ‘-210/(1) .



Note also that to functions (r), having at r = a a zero of second or higher
order (e v (r - a)™, m > 2), corresponds an infinite divergence of the nor-
mal radial tube, so that in the considered approximation 9, becomes zero.

The disruption of radial symmetry of plasma distribution naturally re-
sults in the appearance of 9;, dependence on the direction of irradiation
[37 - 39]. 1In particular, for an object of which the surfaces of equal con-
centration are spheres with a common tangent [39], the quantity ¢,, may be
either greater or smaller than O, at various irradiation angles,

Alongside with the refractional distortion of rays, a great influence
may be exerted on the magnitude of the power scattered by an extended non-
uniform object by losses in the plasma. In the geometric optics approxima-
tion their accounting for v« o 1is performed sufficiently elementarily - by
the mere introduction of the exponential multiplier

exp(— 2 j‘ k, Im [/?dl),
L
characterizing the absorption along the respective radial course (L). It is

obvious that significant losses may take place over a sufficiently stretched _
course, strongly underrating the scattering cross-section even for small Im\ €.

3. RESONANCE SCATTERING ON SMALL PLASMA OBJECTS *

Dipole Resonance in 'Cold' Plasma. Scattering on particles whose size

i a1 o T n o pmamam r
is small by compariscon with the wavelength may, as a rule, be computed in

the dipole approximation, determining the electric and magnetic dipole moments
induced by the field of the incident wave (for two-dimensional cylindircal
objects, equivalent linear currents (electric and magnetic), yielding isotro-
pic scattering, must moreover be taken into account).

One of the most important peculiarities of scattering on small plasma
objects is the possibility of resonance increase of the scattering cross-sec-
tion in the frequency of proper electro-dipole oscillatioas. Generally speak-
ing, no less important role may be played also by high multipole resonances
in the presence of only radiation energy losses [8, 24, 25] with whose ap-
pearance the dipole approximation for a scattered wave becomes invalid.
(Indeed, as the object's dimensions increase, these resonances continuously
pass into the above-mentioned (Div.2) surface wave resonances. In essence
either of them have the same quasi-static nature and they are conditioned in
the final count by the presence in the plasma of elastic restoring forces of
Coulomb origin). However, as the order of multipole oscillation in objects
increases, when the latter are small, the relative share of inner losses
such as particle collisions, collisionless damping) rises rapidly, which re-
sults in the suppression of higher-order resonances. We shall limit oursel-
ves here to the consideration of electro-dipole-type scattering, of which
the differential (0) and total (O;) cross-sections are determined by the
well known expressions

o= laf Rjsinty, o = lafk @)

* (see Appendix)
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(we have in mind the three-dimensional case; Y is the angle formed by the
direction of scattering with the dipole moment vector P = oKy, o is the
polarizability factor, §0 is the amplitude of the electric field of the
incident wave.

As was noted first in the Tonks' work [41], transverse '"electrostatic"
oscillations, capable of being excited by external fields, are also possible
in a "cold" bound plasma, alongside with purely internal longitudinal oscil-

lations in the plasma frequency w,. Their natural frequencies w, always lie
in the region w < w, (which already follows from the general condition of
existence of proper statistical solutions €E%dv = 0), and depend on their

geometrical shape). Thus, for the dipole moment of a uniform sphere of
radius a (k¢z<<l, kyV'ie|a € 1) in case of a real €, we have directly from
its quasi-static expression

e — 1
P=e+2aSE° (9)

the following values:
e(wy) = — 2, Wy = (ﬁp/V_B, | (10)

Analogously, for an infinite cylinder of radius a in a transverse field,
we have

1 e—1 —
i aE )= =1 = elyT.

eazn =

(11)

It is obvious that the resonance values of dipole moments are not infi-
nite. For any accounting of losses there appear in the denominators of the
expressions brought out imaginary corrections defining the value of P(w,)
and the width of the resonance line Y. In the absence of internal dissipa-
tion these corrections have a purely radiational origin and are easily de-
termined by addition to the external field E; of the proper field Er of
the radiation .deceleration. In the three-dimensional case [42], p.245,
we have

2 2.
oy aE,
P = a(Eo + Er) —_ 1 + 2igk(31/3 |
3E 6n (12)
P(o)o) = — l—Q‘é , c1(“’0) = ;g' .
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Therefore, the resonance values of P and O, determined by losses on
the emission, are found to be independent of the structure and dimensions
of the scattering object. The radiation width of the resonance line Yy
is determined by the ratio of its characteristic dimensions to wavelength;
for a sphere

1
"= 3 g (ke@)°. (13)

The influence of internal losses leading to additional widening of the
line and to lowering of the resonance cross-section, depends essentially on
the character of distribution of plasma concentration, or, to be more pre-
cise, to the degree of its boundary washing. As to losses on collisions
between particles, their accounting is performed elementarily (Ime€# 0)
and yields an additional widening of the resonance line of homogenous ob-
jects with sharp boundary Yg = V (case of washed boundary being considered
later).

More complex is the question of the role of thermal flow of electrons
and of spatial dispersion linked with it. The corresponding analysis was
conducted for opposite limiting cases of weak and strong plasma boundary
washing in the scale of Debye radius.

Taking into account of motion in a plasma with sharp boundary leads
first of all to the appearance of a link between the above-mentioned exter-
nal fields with longitudinal (plasma) oscillations and allows us to describe
the resonance effects caused by their excitation. These additional "plasma-
wave' resonances were investigated for a uniform sphere and cylinder in hydro-
dynamic approximation (i. e. in case of weak spatial dispersion) on the basis
of quasi-static description [43], as well as by way of corresponding gene-
ralization of well known plane wave diffraction on bodies made of standard
dielectric [44 - 46]. The solution was sought by standard methods of varia-
able separation, while the accounting of the spatial dispersion was reduced
by the fact, that in a plasma there was introduced alongside with the trans-
verse field a longitudinal one satisfying the independent wave equation.

The relationship between the two fields was materialized by an additional
boundary condition, i. e. the continuity of the normal component of the elec-
tric field. From the expressions thus found for the amplitudes of scattered
waves it follows that the thermal motion does not practically affect the
frequencies of electrostatic resonances and leads to the appearance of a
series of additional resonance lines in the region 0 < € <<1., For dipole
scattering on a sphere, the position of these lines is defined by the condi-
tion

il (kpa) =kp(lj;(kpa), (14)

where j1 is a Bessel spherical function, kf=m}/z7}/1307 is the wave number
for the longitudinal field, vy is the mean thermal velocity of electrons.
An analogous relation for a cylinder is obtained from here by substitution
of the spherical function by a cylindrical one.
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The second important effect resulting in the thermal flow is the col-
lisionless dissipation, essentially conditioned by electron collisions with
plasma boundaries. This boundary dissipation may be investigated in the
hydrodynamic approximation. The damping constants Yp determined by it may
be estimated qualitatively by way of kinetic consideration of oscillation
of a plane plasma layer, partially filling the space between the planes of a
plane condensor (resonances of both forms may also be possible in such a one-

‘dimensional system [43]). 1In case of specular reflection of electrons from

the boundary, for electrostatic and plasma-wave resonances Yp is proportion-
al respectively to the first and fifth powers of the characteristic frequen-
cy of electrons' collisions, with boundary vr/a.

The washing of plasma boundary results in the increase of internal los-
ses and, consequently, in the decrease of the effectiveness of resonance in-
teraction. If the thickness of the transitional boundary region %y of the
plasma exceeds significantly the Debye radius (A{?t%fm% the longitudinal
waves excited in it must satisfy their own kind of condition for emission,
owing to strong Landau attenuation at periphery; this condition makes the
occurrence of plasma-wave resonances impossible in objects with smooth and
monotonic decrease of density from center to periphery. For spherically or
cylindrically symmetrical distributions of plasma these resonances are absent
even in the case when the seepage of longitudinal waves into peripheral re-
glons with strong damping is made difficult by the presence of jumps of deri-
vative concentration [10].

In regions with washed out boundary the electrostatic resonances, though
not fully suppressed, also are found to be attenuated by comparison with the
case of sharp boundary. The decrease of their divisibility is conditioned
by great energy losses in the neighborhood of the surface €(¥) = 0, where
the electric field has a singularity of the type 1/e , lifted either by col-~
lisions of particles (for v/u» (v,/w/)*?), or by spatial dis ion (at ful-
filment of inverse inequality) [9]. In the first case [8, 24], the main dis-
sipation mechanism is in the collisions, and in the second case [10] - in the
energy transformation into longitudinal waves traveling toward the periphery.
The total magnitude of losses inside the boundary layer and the widening of
the resonance line vy, conditioned by these losses are identical in both cases
(for small v and vgp); they are fully defined by the steepness of plasma den-
sity differential in the vicinity of the singular point. In particular, for
a sphere, whose permeability is constant (g = €,) for r < a and increases 1li-
nearly to the unity with derivative de/dr = Q* in the transitional layer.
when /& a, s, ~ —1 we have

P_—. 50—1'_‘-3 . = 3= 5
204 2423 ' T 3 " a2’

w

1 2=
3 (15)

Analogous expressions are obtained for a cylinder.

If the characteristic dimension of the boundary region is comparable
with the dimensions of the object itself, the divisibility w/Y; becomes a
quantity of the order of the unity and the amplitudes of scattered field in-
crease at resonance by no more than 2 - 3 times.
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These conclusions are in agreement with the data of experiments on the
study of resonance scattering on meteor wakes: the oscillograms of the ref-
lected signals show, as a rule, the presence of only one weakly expressed
resonance [47].

When combining the smooth density decrease in the direction toward the
peripheral region with its jump-like drop to zero at a certain boundary sur-
face ¥ = ?b (which, for example, takes place in gas-discharge tubes), the
region of damping of plasma waves, and alongside with it the foundations for
the superimposition upon them the emission conditions disappear for E(?b)<< 1.
Then the resonance effects linked with the excitation of standing plasma
waves become again possible; their transparency region is now disposed at the
periphery and is bounded by surfaces €(¥) = 0 and ¥ = ¥,. This is precise-
ly the way the so called Tonks-Dattner resonances must be interpreted (41, 48].
They were experimentally observed at interaction of high frequency fields
with gas-discharge plasma. The theoretical computation of their spectrum
conducted on adequate models yields quite satisfactory results relative to
experiment from the standpoint of the general character of line disposition,
as well as of that for the magnitude of intervals between them {49 - 52].

The nonlinear effects in condition of resonance interaction already
become noticeable at comparatively small amplitudes of the external field
and may be subdivided into two fundamental groups: 1) the appearance of
higher harmonics of induced polarization and scattered signal [53] and 2)
the so-called self-action processes expressed in the deformation of the sta-

istics in the basic frequency [11, 54].

One of the most important effects of the second group, capable of in-
fluence substantially the resonance properties of objects with washed bound-
ary, is the deformation of spatial distribution of density near the plasma
resonance point Ree = 0. On the one hand, the presence of a sharp maximum
of averaged forces' potential ¢ = 4ne2]§|2/mw2 [55], and the high sensitivi~
ty of resonance losses to the magnitude of density gradient in that region
on the cothet, render the resonance divisibility quite critical relative to
field amplitude. The corresponding computations were conducted for the sim-
plest model with plane-stratified density distribution N(X), subject to Boltz-
mann law and characterized by local complex permeability (¥, TE()()I2 )
[11]. Analysis of the solution of the nonlinear (cubic) equation, determi-
ning the permeability distribution in the presepce of the field, shows that
for amplitude values of the external field Ex(o , exceeding a certain criti-
cal value

12,3m202% \W

e*w

this distribution acquires in the region W, = w the shape of a step, whose
disposition relative relative to the level Ree = O depends on the amplitude
in a hysteretic fashion: as it accrues, the transition through the point
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Ree = 0 takes place by a jump; during the reverse amplitude decrease, the
jump shifts into the region Re€ < 0 and there appears a broad 'plateau"
with Re€ v Im€. The value of electrostatic resonance divisibility respect-
ively increases or decreases by comparison with the linear case.

"Electromagnetic'Resonances in Plasma Cavity. Up until now we did not
mention the standard electromagnetic resonances capable of appearing at spe-
cific correlations between the wavelength inside the object and its dimen-
sions. For plasma objects disposed in a vacuum, these correlations may be
fulfilled only outside the quasistatistical region (for Koa >, 1), where
the oscillations divisibility is found to be quite low (Yr " W) as a conse-
quence of great losses. However, the situation changes substantially for
an object constituting in itself rarefaction (cavity) of plasma. If in
this cavity € = 1, while in the surrounding unperturbed plasma 0 < g, << 1,
the external wavelength results to be of much greater dimension of the cavity
even upon fulfilment of the resonance condition, and, consequently, the los-
ses to emission become quite small while the divisibility increases strongly.
At the same time, contrary to plasma objects in a vacuum, the cavity boundary
washing does not result in the appearance of additional internal losses and
in the weakening of resonance.

The resonance frequencies of quasi-spherical and quasi-splindrical
shapes of cavities lie, as a rule, in the region kga % 1. The exception is
only in the ''zero" mode resonance considered in the works [56, 57] (yielding
isotropic scattering) for a cyligdrical cavity parallel to the electric
field of the incident wave. For kya << 1, the condition of this resonance

has the form (Zoa)zm(u-;goa‘/:)____g.

4. DIFFRACTION ON BODIES PLACED IN A NONUNIFORM PLASMA

Discussed in this section are the problems to a known sense complement-
ary to those considered earlier: emitter (1), scattering object (2) and
emitter (3) are assumed to be disposed in an inhomogenous (nonuniform)
plasma medium with permeability €(¥); it is required to determine the trans-
mission factor K,,, characterizing the part of the received signal which is
conditioned by scattering on the object. In the most general statement
such kind of problems appear as being extremely complex. Here we shall limit
ourselves to the consideration of some sufficiently typical particular cases
referred to a medium whose properties vary slowly in the wavelength scale.

Field Transformation Factors. Apparent Scattering Cross-Section. A sub-
stantial simplification of the problem stated is obtained by the introduc-
tion of the following assumptions: 1) the scattering object and the receiver
are disposed in the region of applicability of the geometric optics approxi-
mation respectively for the primary and scattered fields; 2) the emitted
signal will hit the receiver along a single radial course (emitter-object-
receiver); 3) the dimensions of the receiver, emitter and object are suffi-
ciently small by comparison with the characteristic scale of medium's inho-
mogeneity, so that in the formation regions of their radiation patterns the
medium is practically uniform (it should be possible to postulate without
any limitation of generality that €; = €3 = 1).
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At fulfilment of these conditions the accounting of the inhomogenous
medium amounts to the investigation of its transforming properties over cor-
responding radial trajectories, while the diffractional part proper of the
problem looks the same as in a uniform medium. Effecting the required con-
.versions of energy fluxes, and comparing their values in a uniform and inho-
mogenous media, we obtain the following expression for the transfer coeffi-
cient:

G iAoy 45(e,) (Tﬁ) ng’)'
4=R}, R} 3

k&na=’

) (17)

where G, and A, are the respectively the coefficient of directed action and
the effective area of transmitting and receiving antennas; R;; and R,; are
the distances from transmitter to receiver to the object; TE, and 16 are

the amplitude transformation factors of electric field obviously linked

with the so called focusing factors [58). The first of them is equal to the
ratio of electric field amplitudes induced by the emitter at the place of
location of the object in the given inhomogenous medium and in the vacuum
for identical R;; and fixed orientation of emitter's radiation pattern rela-
tive to the direction of exit of the ray hitting the object. The second
coefficient is determined analogously for the field in the receiving zone
with the difference, however, that here plasma surrounding the object (g =g,)
is taken for the hypothetical uniform medium and not the vacuum. The dif-
ferential scattering cross-seetion o,, (g,) is determined in the same uni-
form medium, whereupon directions 1 and 3 are chosen taking into account the
refraction. In a number of cases the quantity ¢ 3 (52) is simply expressed
by the cross-section ¢, in the vacuum. In particular, for ideally conduct-
ing objects the similitude factor f(g,) = 013(52)/053 in geometrooptical (kas> 1)
and quasistatic (koa << 1) approximations is respectively equal to 1 and .

Therefore, in an inhomogenous medium the role of standard scattering
cross—-section is played by the quantity
5;3= 013(52) (T'(E; T(?E:;))" (18)
which may be called "apparent cross-section'; for a given o,, (g,), its cal-

culation amounts to the search for transformation factors of electric field
amplitudes.

In the particular case of backscattering when irradiated by en elementa-
ry electric dipole, we have by virtue of reciprocity relations

TR=TH=TH, <,= TE oy (ey). (19)

Rather detailed calculations of the coefficient T(E) in an i{lluminated re-
gion were conducted for linear and parabolic plane-stratified distributions
€(z) [59]. One of the typical cases related to the linear layer (¢ = 1 - az,
z > 0), is shown in Fig.2, where the dependence T(E) (z) is plotted for rays
emerging from the point z = -h with different initial inclination angles
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8, to the axis z (dashed lines refer to rays having passed the caustic).
Note here that parameter h = 0.725 was chosen 80 as to meet to some measure
the conditions of the Earth's ionosphere. The curves are broken at the .

boundary of geometric optics applicability, where the quantity T E) attains
the maximum value (see below).

7
8

ah=0725

B-40°

———

Point Scatterers in the Region of Geometric Optics Disruption. For
objects small by comparison with the dimensions of field inhomogeneity,the
method described remains valid (with some refinements) even in the case
when they are disposed in regions where the geometrooptical approximation is
inapplicable.Thus, in the case of electro-dipole-type scattering the expres-
sions for the apparent cross section of backscattering Ulﬁ and of the trans-
mission factor K;,; remain without change except for the fact that the quan-
tity 5,,(%2) is replaced by the product A% f(s,), where f(s;) is the ratio of
object polarizability in media with € = €; and € = 1 (the wave vector and the
polarization of a plane wave relative to which 0, is computed, are determi-
ned by the direction of the unperturbed electric field at the given point of
the inhomogenous medium).

In the feebly inhomogenous plasma considered by us we may separate three
characteristic regions in which geometric optics are inapplicable for a given
position of the source: the near-caustic region, the shadow and plasma reso-
nance regions (in the vicinity of € = 0). The indicated regions differ among
themselves by the structure of the field and the method of its calculation,

though even here, as a rule, one may start from somewhat modified radial re-
presentations.

For a region near a caustic surface (the shape of caustic surfaces for
various positions of the source and various forms of medium inhomogeneity
was investigated in [60]) the corresponding method was expounded in [61. 62]
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(see also [63]). 1In essence, this method is that of standard Eyri functions,
but their arguments and coefficients are computed by the standard formulas of
geometric optics. It is necessary to stress that the region of geometro-opti-
cal approximation in fact extends through the first maximum of the Eyri func-
tion, where its exact values still remain close to asymptotic., Referring
again to Fig.2 where curves T(E) (z) are plotted, let us remark that the maxi-
mum values of T(E) correspond precisely to the first maximum and are, as may
be seen from the drawing, sufficiently great, so that at &, = 60° the gain in
backscattering cross-section of,/s{) may constitute more than three orders.
Note that the strong scatter effect near the caustic surface was first es-
tablished in [64], applicably to fluctuations in the ionosphere.

Applicably to the region of caustic shadow the generalization of the geo-
metric optics method is based upon the introduction of complex rays {65] (see
also the review paper [66]). As to the resonance region (w, = w, (EVE) # 0),
the generalization of "complex'" geometric optics is apparengly possible for
a sufficiently far withdrawal of that region from caustic surface in the case
of linear transition of & through zero and provided Whittaker functions are
used for standard ones [67]. However, in the more interesting case of close
disposition of caustic and resonance surfaces (when the resonance increase of
amplitude bccomes maximum [9]), one can not generalize the geometro-optical
method by virtue of the absence of unified standard functions. Special con-
sideration is also required of resonance regions with another character of
transition through zero [7}. As this transition '‘smoothes out", i. e. as the
number of derivatives becoming zero increases, the effect of resonance in-
crease of the field gradually attenuates and vanishes completely in the limit
case of a uniform layer with ¢ = 0. (At the same time if v/w - 0 for all tran-
sitions excpet the linear, the surface € = 0 is found be an ideal screen re-
lative to TM-type fields). However, even in the case when this effect is ex-
pressed sufficiently strongly, the decrease of the similitude factor f(e3)
is hindering the significant increase of the apparent cross--section. Thus
for a small metallic object (f(sz) = Ei) for values of parameters close to
iongspheric, the ratio o;JcP} approaches in the best case the unity, as
Ree® » 0.

One of the most curious example is the region of lowered concentration
i. e. the plasma cavity considered in the preceding section as an object on
which scattering may have a resonance character. If the wavelength in the
surrounding plasma is small by comparison with the characteristic dimension
of the cavity and with distances over which a substantial plasma density dif-
ferential takes place inside it, all kinds of resonance events vanish comple-
tely and the problem of scattering is reduced to the study of ray refraction
in the cavity itself and in the surrounding medium. The inhomogeneity of the
latter then acquires an extremely important role, inasmuch as a direct inver-
se reflection from the cavity considered is absent in general in geometric
optics approximation and the return of the scattered signal to the source is
possible only in the presence by a distorted radial course in the correspond-
ing manner. Applicably to scattering on rarefaction of electron density in
the Earth's ionosphere, two characteristic courses of such form can be indi-
cated: 1) as a result of refraction on cavity, the ray rolls out perpendi-
cularly to ionosphere layers, reflects from the surface € = 0, and returns
to the source along the same trajectory; 2) at passage through the cavity




18

the ray undergoes a strong rotation, which is stronger than in the first
case, and drops on the reflecting layers of the ionosphere at an angle, en-
suring its return to the source without secondary refraction on cavity.

When there is little difference in the indices of refraction of the
cavity and of the surrounding medium, scattering in the inverse (return) di-
rection still may be quite significant if the wave vector of the incident
wave is oriented at the outset perpendicularly to the reflecting layers.

At the same time, the backscattering cross-section may be found by way of
direct calculation of distortions of the general phase front, determined
without taking into account the distortion of rays [57].

*%%* T H E E N D *k%x%
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[ADDENDA]

MITTED FROM TEXT.

* (page 8) The formal condition for surface wave reonances in the vi-
cinity of the point € = -1 has the same form as for quasistatic multipole
oscillations [24, 25]: en+n+1=0; n=1, 2, 3, ... It is of interest
that the scattering cross-section of a nonabsorbing sphere of any radius, the
expression for which at resonance of n-th order always contains the addend
2m (2n + 1)/k§ as n*>», i, e. as € » -1, becomes infinite (for the case of
sphere of large radius this fact was first noted in [26]); the indicated
singularity is, in truth, fully lifted by the introduction of as small an
absorption as deemed desirable.

(page 9) The contents of this and of subsequent sections were expounded in
abbreviated form in the review [40].

** (page 17).. insert omission:

Scattering on Objects of Large Dimensions (ka >> 1). When in feebly
inhomogenous medium, it may be investigated directly in the geometric optics
approximation without the above breakdown into '"diffraction" and "refraction”
parts. Such a division loses all sense the more so when the dimensions of
the object (or to be more precise, of that part of it by which scattering is
determined in the given direction) become comparable with the dimension of
the inhomogenous medium. Attention should be paid here to works [68 - 70),
where the locality principle is refined and the geometric theory of dif-
fraction developed for objects with impedance boundary conditions.




REFERENTCES 19

[ 1] V.L. GINSBURG, Propagation of Electromagnetic Waves in Plasma,
Fizmatgiz, M., 1960

{ 2] G. VAN DE HULST, Light Scattering by Small Particles, IL. M.,
1961

[ 3] T.TAMIR, A.A. OLINER, The Spectrum of Electromagnetic Waves
%uide? by a Plasma Layer., Proc. IEEE, 51,317

1963

[ 4] T.TAMIR, A.A. OLINER, Guided Complex Waves, Part I: Fields at
an interface; Part 2: Relation to Radiation Pat-
terns, Proc. IEE, 110, 310, 325 (1963)

[ 5] I.G. KONDRAT'EV, M.A. MILLER, I, IVUZ, Radiofizika, 7, 124, (1964)

[ 6] T.TAMIR, S. PALOCS, Surface Waves on Plasma~clad Metal Rods,
IEEE Trans., MTT-12, 189 (1964)

[ 71 I.G. KONDRAT'EV, M.A. MILLER, IVUZ, Radiofizika in print.

[ 8] N. HERLOFSON, Plasma Resonance in Tonospheric Irregularities,
Ark. Fys., 3, 247 (1951)

[ 9] N.G. DENISOV, ZHETF, 31, 609, (1956

[10] V.B. GIL'DENBURG, ZHETF, 45, 1978, (1963)

[11] V.B. GIL'DENBURG, ZHETF, 46, 2156, (1964)

[12] S.S. KALMYKOVA, ZHETF, 31, 1374 (1961)

[13] V.I. KURILKO, IVUZ, Radiofizika, 9, 9280, (1966)

[14] H. IKEGAMI, Scattering of Microwaves from a Plasma Column in

Rectangular waveguides, Research Report IPPJ-27,
Institute of Plasma Physics, Nagoya University,
1964
[15] K.p. JOHNSON, Transient Response of Reentry Plasmas, Rept. Lin-
coln La . Mass. Inst. Technol., IV/35, 1962
[16]1] H.A. CORRIHER, B.O. PYRON, A RBRiblicgraphy of Articles on Radar
Reflectivity and Related Subjects 1957-1964, Proc.
IEEE, 53, 1025 (1965) (Russian Translation, page
. 1172)
[17] F.M. MORS, G. FESHBAKH, Methods of Theoretical Physics, 2, IL.
M., 1960
[18] YA.L. AL'PERT, A.V. GUREVICH, L.P. PITAEVSKIY, I1SZ-(AES) izd-vo
NAUKA, M., 1964
{19] R. ESHLEMAN, Theory of Radio Reflections from Electron-ion
Clouds, IRE Trans., AP-3, 32 (1955)
[20] W. FLOOD, Meteor Echoes at Ultra High Frequencies, J. Geophys.
Res., 62, 79 (1957)
[21] YE.N. VASIL'EV, YU.I. ORLOV, V.A. PERMYAKOV, ZHTEF, 34, 1341
(1964) ’
[22] V.A. PERMYAKOV, V.V. SOLODUKHOV, IVUZ, Radiofizika, 8, 893 (1965)
[23] P.J. WYATT, Electromagnetic Scatterinb y Finite Dense Plasma,
J. Appl. Phys., 36, 3875 (1965)
[24] T.R. KAISER, R.L. CLOSS, Theory of Radio Reflection from Meteor
Trails, Phil. Mag., 43, 1 (1952)

[25] V.B. GIL'DENBURG, I.G. KONDRAT'EV, ZHETF, 33, 301 (1963)

[26] V.A. PERMYAKOV, IVUZ, Radiofizika in print.

[27] K.N. STEPANOV, ZHETF, 35, 1349 (1965)

[28] G.H. KEITEL, Certain Mode Solutions of Forward Scattering by

Meteor Trails, Proc. IRE, 43, 1481, (1955)



[48]
[49]
[501]

[51]
(52]

(53]

REFERENCES 20
(continued)

D. ARNUSH, Electromagnetic Scattering from a Spherical Nonuni-
form Medium, Part I: General Theory, IEEE Trans.,
AP-12, 86 (1964); R.S. MARGULIES, F.L. SCARF,
Part 2: The Radar Cross Section of a Flare, ibid,91l.
P.E. BISBING, Electromagnetic Scatterinag by an Exponentially
Inhomogeneous Plasma Sphere, IEEE Trans., AP-14,
219, (1966)
V.A. PERMYAKOV, IVUZ, Radiofizika in print.
L.A. MANNING, The Strength of Meteoric Echoes from Dense Columns
J. Atmos. Terr. Phys., 4, 219 (1953)
L.A. MANNING, Oblique Echoes from Over-Dense Meteor Trails, J.
Atmox. Terr. Phys., 14, 82 (1959)
L.A. MANNING, Ray-path Calculation of Over-dense Meteor Echo
Strength, J. Atmos.Terr. Phys., 25, 182 (1963)
YU. S. SAYASOV, ZHETF, 31, 261, (1961).
N.P. MAR'IN, Radiotekhnika i Elektronika, 10, 235 (1965)
N.P. MAR'IN, Geomatnetizm i Aeronomiya, 5, 260 (1965)
N.P. MAR'IN, Radiotekhnika i Elektronika, 10, 1765 (1965)
YU. M. ZHIDKO, IVUZ, Radiofizika in print.
V.B. GILDENBURG, I.G. KONDTRATJEV, M.A. MILLER, Diffraction
of Electromagnetiu waves by Plasma Structures,
Proc. of a Symposium, on Electromagnetic Wave
Theory, 1965, Delft. Pergamon Press 1966, p.580
L. TONKS, The High Frequency Behavior of a Plasma, Phys., Rev.,
37, 1458 (1931)
L.D. LANDAU, E.M. LIFSHITS, Field Theory, Fizmatgiz, M., 1960
P.E. VANDENPLAS, R.W. GOULD, Resonant Behaviour of a Plasma
Slab-condenser system, Physica, 28, 357 (1962)
A. YILDIZ, Scattering of Plane Plasma Waves from a Plasma Sphere
Nuovo Cimento, 30, 1182 (1963)
B.V. GIL'DENBURG, I.G. KONDTRAT'EV, Radiotekhnika i Elektronika,
10, 658 (1965)
L.K. RYZHOVA, I.P. YAKIMENKO, IVUZ, Radiofizika, 10, 666 (1967)
R.L. CLOSS, J.A. CLEGG, T.R. KAISER, An Experimental Study of
Radio Reflections from Meteor Trails, Phil. Mag.,
44, 313 (1953)
A. DATTNER, Experiments on Plasma Resonance, Ericsson Technics,
13, 309 (1957
F.W. CRAWFORD, The Mechanism of Tonks-Dattner Plasma Resonances,
Phys., Letters, 5, 244 (1963)
J.C. NICKEL, J.V. PARKER, R.W. GOULD, Resonance Oscillations in
a Hot Nonuniform Plasma Column, Phys. Rev. Letters,
11, 183 (1963)
B. GIL'DENBURG, ZHETF, 34, 372 (1964)
.E. VANDENPLAS, A.M. MESSIAEN, Hot Inhomogeneous Plasma, II:
Perturbed Scalar Pressure Approximation, J. Nucl.
Energy Part C, 6, 459 (19640
R.A. STERN, Harmonic Generation and Frequency Mixing at Plasma
Resonance, Phys. Rev. Letters, 14, 538 (1965)



[54])
[55]
[56]

[57]

(58]
[59]
[60]
[61]
[62]
[6.3]

[(64]
[65]

[66]
[67]

REFERENCES
(continued) 21

A.A. ANDRONOV, ZHETF, 36, 196 (1966)

A.V. GAPANOV, M.A. MILLER ZHETF, 34, 242 (1958)

YU.S. SAYASOV, L.A. ZHIZHIMOV, Radlotekhnlka i Elektronika,
8, 499 (1963)

A.V. GUREVICH, L.P. PITAEVSKIY, Geomatnetizm i Aeronomiya,
6, 842 (1966)

L .M. BREKHOVSKIKH, Izd-vo AN SSSR, M., 1957

S.D. ZHERNOSEK, I.G. KONDRAT'EV, IVUZ, Radiofizika in print.

YUu.I. ORLOV, I, II, IVUZ, Ralelelka, 9, 497, 657 (1966)

YU.A. KRAVTSOV, IVUZ, Radloflzika, 7, 664 (1964)

YU.A. KRAVTSOV, IVUZ, Radiofizika, 7, 1049 (1964)

D. LUDWIG, Uniform ujmptotlc Expansions at a Caustic, Common.
Pure Appl. Math., 19, 215 (1966)

N.G. DENISOV, IVUZ, Radiofizika, 3, 208 (1960)

J B. KELLER, A Geometrical Theory of Diffraction, Proc. Symposia
Appl. Math., McGraw-Hill, 8, 27, (1958)

YU.A. KRAVTSOV, IVUZ, Radiofizika in print.

G.I. MAKAROV, Izd-vo LGU, vyp. 1, 63 (1962.



